Using Small Unmanned Aerial Systems (sUAS) and Helium Aerostats to Perform Far-Field Radiation Pattern Measurements of High-Frequency Antennas

Joshua M. Miller, Emmanuel Decrossas

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California, USA

Outline

- Summary
- Europa mission overview
- VHF & HF antenna design
- Problem with HF pattern measurements
- VHF antenna measurements
- HF antenna measurements
- Further development
- Conclusion and acknowledgements

Summary

- This paper presents a new methodology for performing near-free space, far-field radiation pattern measurements of high frequency (HF) antennas for the upcoming Europa Clipper mission
- Due to the physical size of the antennas, traditional radiation pattern measurement techniques could not be used
- Measurements are conducted using a small Unmanned Aerial System (sUAS) and aerostats

Europa Mission Overview

- Characterize the distribution of any shallow subsurface water.
- ② Search for an ice-ocean interface and characterize the ice shell's global structure.
- ③ Investigate the process governing material exchange among the ocean, ice shell, surface, and atmosphere.
- 4 Constrain the amplitude and phase of gravitational tides.
- (5) Characterize scientifically compelling sites, and hazards, for a potential future-landing mission.

REASON Overview

The antennas under test are part of REASON

(Radar for Europa Assessment and Sounding: Ocean to Near-surface)

REASON provides four main measurements of Europa:

- Sounding to probe the ice shell
- Altimetry to determine surface elevations
- Reflectometry to study surface roughness
- Plasma/particles to detect active plumes through ionosphere characterization

Two radars, 9 MHz and 60 MHz, on board

- 9 MHz gives 150m vertical resolution up to 30 km
- 60 MHz gives about a 15m vertical resolution for sounding close to the icy surface up to 4.5km deep
 - Two separate cross-track channels at 60 MHz provide clutter discrimination

VHF Antenna Overview

- The VHF folded dipole consists of two aluminum tubes, bent and connected at the top of the antenna
- A matching network (balun) at the base of the antenna is used to feed the radiating element differentially, providing the linearly polarized electrical field.
- The VHF dipole operates at 60 MHz

HF Antenna Overview

- The HF dipole consists of two deployable monopoles mounted back to back to form a linear half wave dipole for 9 MHz
- A matching network (balun) at the base of the antenna is used to feed the radiating element differentially, providing the linearly polarized electrical field.
- The antenna is 17 meters in length from end to end when fully deployed

Problem

We need to verify the impedance and radiation pattern of an HF antenna for operation in a free-space environment.

- Difficult to verify using a traditional anechoic chamber due to wavelength of operation
- Determining the far-field region *R* and distance for measurement shows we need *a lot* of space

$$R = \frac{2D^2}{\lambda} \Rightarrow R = 15.37m$$
 $R >> D \Rightarrow R \approx 150m$

Is it possible to get our antenna test setup into this configuration to enable successful far-field pattern measurements?

HF Antenna Test Setup Concept

sUAS Configuration

A DJI S1000 octocopter is used for airbone measurements around the antenna under test (AUT)

Windows PC

USB Spectrum Analyzer

Differential GPS

Biconical Antenna

VHF Measurements & sUAS Verification

- Far-field pattern measurements were first verified on the ground using a fixed VHF antenna
- This allows us to verify the far-field pattern mapping using the drone before introducing any error from the aerostat
- sUAS flies in a defined hemispherical pattern, taking measurements every 15° in azimuth and elevation
- Based on Friis equation, we expected -31.5 dBm max received power at the drone based on transmit power

VHF Measurement Results

- Measurements from the sUAS were compiled and plotted into 3D plots for analysis
- Maximum received power was -32 dBm (-31.5 expected)
- Based on results, we can reasonably conclude that measurements taken with the sUAS and a fixed antenna are viable

HF Antenna Test Setup Concept

- Antenna is suspended ~100 meters above the ground using support structure
- S₁₁ (response) measurements are first performed to ensure good match and radiation
- Fly drone in cylindrical pattern to collect power readings
- Log position data on both during data collection

Aerostat & HF Antenna Setup

- A helium-filled aerostat is used to hoist the antenna high above the ground without a ground supporting structure
- The aerostat is 8 m in diameter, uses 93 m³ of helium, and provides 65 kg of lift capacity
- The tether cord is 300 m long non-conductive Spectra Kevlar
- The AUT is suspended vertically under the aerostat to position nulls towards the ground
- Using EZNEC and HFSS, it was determined that the 9 MHz antenna needed to be >100 m above the ground before the ground no longer affects the antenna impedance
- FAA regulations limit operation to 150 m

Measurement Hardware

Self-contained and self-powered transport case that provides measurements on the aerostat (no cables run down to the ground)

- Network analyzer/Spectrum analyzer
- 1-100 MHz CW signal source
- Micro PC with Windows 10 for logging
- 3 axis Inertial Measurement Unit (IMU)
 - Gyroscope
 - Accelerometer
 - Magnetometer
- GPS receiver (latitude, longitude, altitude, timing)
- Wi-Fi remote control
- 8 hours of battery life

HF Antenna S₁₁ Measurement Results

- S₁₁ data collected at 9.95
 MHz during ascent of antenna on aerostat platform using network analyzer
- Response changed as antenna gained altitude
- Around approximately 100 ft (30 m) altitude response stopped changing
- Confirms our calculations for far field and measurement distance

Work to be completed

- Need to work logistics for launching and recovering antenna and measurement hardware
- Determine method for station keeping of aerostat
- Actually perform 3D cylindrical pattern measurements of HF antenna
- Develop mathematical transform to convert cylindrical measurements to antenna pattern

Error Sources & Minimization

- Drone position accuracy is about ±0.5 m
 - This impacts measurement value by 0.1-0.2 dB @ 150 m
 - Addition of differential GPS (DGPS) increases position accuracy (<10 cm)

- Polarization mismatches
 - Roll/pitch/yaw is being recorded on both the drone and antenna platform during testing
 - Post-measurement corrections can be done with this data

Conclusions

- Using an aerostat plus a properly equipped sUAS/drone can be a viable method for far-field measurements of an HF antenna
- An sUAS/drone can provide reasonably accurate signal measurements when flown in a pre-defined pattern
- By managing error sources (positions of drone, antenna platform, etc.) and making use of position data, error margins can be reduced
- Further developments such as more automation may improve measurement accuracy

Backup Slides

VHF Pattern Measurements & Simulations

- The drone recorded several radiation far-field pattern measurements for different cuts.
- Radiation patterns for measurements and HFSS simulations for the 90° azimuthal cut.
- Several radiation pattern cuts are measured and simulated at 0, 45, 135, and 270 degrees in azimuth, for all possibilities and for different drone travelling directions.
- All the cases show good agreement with simulation.

